From PTN: info on the Affordable Care Act and how it effects us…

A FREE insurance informational meeting on Tuesday, October 29th
6pm in the PTN Conference Center. [Read more…]

First Annual SBDSA Boot camp

Our fundraiser originally planned for June will now take place on the 28th July at 8.30 am.

[Read more…]

Foods for children with Down syndrome

Advances in Treatment of Children with Down Syndrome

Join Nina Yoshpe, M.D. and a team of multi-disciplinary specialists from Miller Children’s Hospital Long Beach for a free special presentation on the advances in treatment of children with Down Syndrome.

More info can be found here.

Why So Many Babies Are Still Being Born With Down Syndrome

As prenatal tests improve, more and more women are finding out if their fetus has an extra chromosome, but they’re still carrying to term.

An interesting article in The Atlantic.


~ Bronwyn

Celiac Disease and Gluten sensitivity

I’ve been doing some research on gluten since I put Magnus on a gluten free diet [Read more…]

An End for Down syndrome?

A new, simple way to detect Down syndrome in a fetus means the condition will be virtually extinct — but not without a great deal of controversy, experts say.

NDSS Webinar: Oral Health and Down Syndrome

Dear Friends,

This is a reminder, if you have not yet resgisterd that our November webinar will be “Oral Health and Down Syndrome” with Jessica De Bord.  (This is an encore presentation from earlier this year).

This presentation will describe oral characteristics that are common in people with Down syndrome, ways to prevent dental disease, and tips for finding a dentist and having a successful dental visit.

Jessica De Bord is an Assistant Clinical Professor of Pediatric Dentistry at the Herman Ostrow School of Dentistry of USC. Dr. De Bord is the oral health faculty for the Leadership Education in Neurodevelopmental Disabilities at the USC University Center for Excellence in Developmental Disabilities at Children’s Hospital Los Angeles. She earned her BA from San Diego State University and her DDS from the UCLA School of Dentistry. Dr. De Bord completed her residency training in Pediatric Dentistry at the University of Washington (UW) and Seattle Children’s Hospital, where she served as Chief Resident. During her residency she completed a Certificate in Maternal and Child Health through the UW School of Public Health, an MS in Dentistry, and an MA in Bioethics and Humanities.

Dr. De Bord’s primary clinical and research interests are the oral health of children with developmental disabilities and ethics. She serves on the American Academy of Pediatric Dentistry Committee on Special Needs, is a member of the Clinical Advisory Board of the National Down Syndrome Society, serves on the Children’s Hospital Los Angeles Ethics Resource Committee, and is a board member of the Academy of Dentistry for People with Disabilities. She is a member of the American Academy of Developmental Medicine and Dentistry, the American Society of Bioethics and Humanities, and the American Society of Dental Ethics.

Slides from the presentation will be posted to During the webinar there will be time for Q and A.

Please feel free to share this webinar and the login information with anyone you feel may be interested in the presentation.

Please register to attend this webinar, which will take place on Monday, November 14th at 12pm Eastern.  Seats are limited:



National Down Syndrome Society

Two Genes Identified for Congenital Heart Defects in Down Syndrome

A novel study involving fruit flies and mice has allowed biologists to identify two critical genes responsible for congenital heart defects in individuals with Down syndrome, a major cause of infant mortality and death in people born with this genetic disorder. In a paper published on November 3, 2011 in the open-access journal PLoS Genetics, researchers from the University of California (UC)-San Diego, the Sanford-Burnham Medical Research Institute in La Jolla, California, and the University of Utah report the identification of two genes that, when produced at elevated levels, work together to disrupt cardiac development and function. Down syndrome, the most common genetic cause of cognitive impairment, is a disorder that occurs in one in 700 births when individuals have three, instead of the usual two, copies of human chromosome 21. “Chromosome 21 is the shortest human chromosome and intensive genetic mapping studies in people with Down syndrome have identified a small region of this chromosome that plays a critical role in causing congenital heart defects,” said Dr. Ethan Bier, a biology professor at UC-San Diego and one of the principal authors of the study. “This Down syndrome region for congenital heart disease, called the ‘DS-CHD critical region,’ contains several genes that are active in the heart which our collaborator, Julie Korenberg, had suspected of interacting with each other to disrupt cardiac development or function when present in three copies. But exactly which of these half dozen or so genes are the culprits? Identifying the genes within the DS-CHD critical region contributing to congenital heart defects is challenging to address using traditional mammalian experimental models, such as mice,” added Dr. Bier, “since the number of possible genetic combinations that would need to be generated and tested is very large.” To simplify their search, the scientists turned to fruit flies, a simpler and rapidly reproducing biological system with many of the same genes as mice and humans. With help from collaborators Drs. Amir Gamliel, Geoff Rosenfeld, and Kirk Peterson at the UC-San Diego School of Medicine; Drs. Rolf Bodmer and Karen Ocorr at the Sanford-Burnham Medical Research Institute; and Dr. Julie R. Korenberg at the University of Utah; biologist Dr. Tamar Grossman in Dr. Bier’s lab devised a sequential genetic approach to untangle the problem. “First, fruit flies were used to test for all possible pairwise genetic interactions between these genes that might disrupt the function of the simple fluid pumping fly heart,” said Dr. Bier.” These comprehensive genetic studies pointed to a particular pair of genes known as DSCAM and COL6A2 that resulted in the most severe defects when over-produced together.” Then the researchers tested the effects of increasing the levels of these genes in the hearts of experimental mice. They first generated genetic lines of mice having elevated activity of each of these genes in the heart and then genetically crossed these mice to create offspring that over-produced both genes together. The parental mice as well as their offspring were then tested for heart function and visible heart defects. Mice having elevated levels of each gene separately were largely normal. But the offspring with extra levels of both genes suffered from severe cardiac defects. These heart defects were of two kinds. The first resembled one of the salient features of Down syndrome cardiac patients, in which blood shunts between the two atrial chambers of the heart through small holes in a septum that normally isolates these two chambers. The second defect, which is not frequently observed in Down syndrome patients, but is a common and very serious condition in the general population, was a thickening of the heart wall—referred to medically as cardiac hypertrophy. “Such thickening of the heart wall greatly reduces heart function and can lead to fatal heart attacks, which indeed was observed among some of the more seriously affected DSCAM and COL6A2 over-producing mice,” said Dr. Bier. He added that the tiered genetic approach, using fruit flies, then mice, could be useful in identifying genes involved in other common genetic disorders that are thought to be caused by multiple genes. “These conditions arise due to a surprising variation in the copy number of small intervals of human chromosomes that are carried by virtually all people,” Dr. Bier said. “Depending on which small regions of the chromosome have extra or fewer copies of genes, various conditions can result, including obesity, autism, and schizophrenia. Typically in these diseases, as in Down syndrome, the difficult puzzle is which of the possible genes with altered copy number are involved in causing the disease.”

Early Intervention

Down Syndrome Genetic Insights & Thoughts on Early Intervention

Building Baby’s Intelligence:
Why Infant Stimulation Is So Important